

Variational Calculations of Rovibrational States: A Precise High-Energy Potential Surface for HCN [and Discussion]

Stuart Carter, Nicholas C. Handy and Ian M. Mills

Phil. Trans. R. Soc. Lond. A 1990 332, 309-327

doi: 10.1098/rsta.1990.0117

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here**

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

Variational calculations of rovibrational states: a precise high-energy potential surface for HCN

By Stuart Carter¹, Nicholas C. Handy² and Ian M. Mills¹

- ¹Department of Chemistry, University of Reading, Reading RG6 2AD, U.K.
- ² University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

We report the results of variational calculations of the rovibrational energy levels of HCN for J=0, 1 and 2, where we reproduce all the ca. 100 observed vibrational states for all observed isotopic species, with energies up to 18000 cm⁻¹, to about $\pm 1~{\rm cm^{-1}}$, and the corresponding rotational constants to about $\pm 0.001~{\rm cm^{-1}}$. We use a hamiltonian expressed in internal coordinates r_1 , r_2 and θ , using the exact expression for the kinetic energy operator T obtained by direct transformation from the cartesian representation. The potential energy V is expressed as a polynomial expansion in the Morse coordinates y_i for the bond stretches and the interbond angle θ . The basis functions are built as products of appropriately scaled Morse functions in the bond-stretches and Legendre or associated Legendre polynomials of $\cos \theta$ in the angle bend, and we evaluate matrix elements by Gauss quadrature. The hamiltonian matrix is factorized using the full rovibrational symmetry, and the basis is contracted to an optimized form; the dimensions of the final hamiltonian matrix vary from 240×240 to 1000×1000 . We believe that our calculation is converged to better than 1 cm⁻¹ at 18000 cm⁻¹. Our potential surface is expressed in terms of 31 parameters, about half of which have been refined by least squares to optimize the fit to the experimental data. The advantages and disadvantages and the future potential of calculations of this type are discussed.

1. Introduction

The calculation of vibration-rotation energy levels and wavefunctions for a polyatomic molecule at high vibrational energy, which is closely related to our understanding of molecular dynamics, remains a major unsolved problem in molecular physics. In this context we assume that the potential energy surface is given; a polyatomic molecule means three or more atoms, and high vibrational energy means above 10000 cm⁻¹ (i.e. 120 kJ mol⁻¹), which is only about 25% of a typical chemical bond dissociation energy.

The traditional approach to this problem is to first solve the problem of small amplitude vibrations in the harmonic approximation (Wilson 1939; Wilson et al. 1955), and then to treat anharmonicity as a perturbation to this zeroth order model (Nielsen 1951; Mills 1971; Hoy et al. 1972; Papousek & Aliev 1982; Aliev & Watson 1985). Although this method provides a framework for the analysis of vibration-rotation spectra, it fails at high vibrational excitation for two reasons. First, the curvilinear nature of the natural coordinates of molecular vibration, and the deviation from harmonic behaviour in the potential (particularly for the approach to

Phil. Trans. R. Soc. Lond. A (1990) 332, 309-327 Printed in Great Britain

[121]

bond dissociation in stretching coordinates), become too large for a perturbation treatment at high energy. It becomes necessary to pursue the perturbation theory to high order, which leads to complex formulae and major problems of convergence in the resulting power series expansions. Secondly, for a polyatomic molecule the density of vibrational states grows rapidly at high energy, and the perturbations lead to increasingly frequent resonances for which the interactions are stronger than the separations between the zeroth-order states. The usual approach to this problem is to first treat the weak interactions by perturbation theory, using a contact transformation to obtain a hamiltonian matrix which is blocked into resonating polyads, and then to diagonalize these remaining blocks of the hamiltonian matrix numerically. This has developed into a standard procedure for treating Fermi and Coriolis resonance at low vibrational energy, although it requires specific programming for each molecule (see, for example, Champion et al. 1982; Halonen et al. 1984). With the inclusion of Darling-Dennison resonance to take account of the transition to local modes (Child & Lawton 1981; Child & Halonen 1984; Mills & Robiette 1985) the method has been extended to interpret observed vibrational states (but not rotational structure) up to 15000 cm⁻¹ (see, for example, Dübal & Quack 1984; Amrein et al. 1985; Baggott et al. 1986), but it is clear that the interaction constants obtained from such analyses are effective constants that are difficult to interpret.

However, even for a triatomic molecule such as HCN, discussed in this paper, the total density of vibrational states is of the order 1 per cm⁻¹ at 15000 cm⁻¹, and for molecules with four or five atoms this rises to the order of 10³ per cm⁻¹ (see Beyer & Swinehart (1973) and Stein Rabinovitch (1973) for a discussion of the calculation of densities of vibrational states); by contrast, the coupling terms increase in magnitude for the higher quantum numbers, and are often greater than 1 cm⁻¹. Thus we approach the situation where resonances are the rule rather than the exception, and the basis of the perturbation treatment is lost; this is the reason for the 'irregular' or 'chaotic' patterns of states at high energy. However, some order and regularity remain amongst the disorder even at the highest energies, and these regular states play a key role in the spectroscopy and dynamics of highly excited molecules. We search for new methods of calculating wavefunctions and energies at high excitation that will meet these problems.

In this paper we describe our attempts to calculate rovibrational energy levels and wavefunctions variationally, by diagonalizing the matrix of the hamiltonian in a carefully chosen basis. We are applying these methods to 3-atomic and 4-atomic molecules such as HCN, HC \equiv CH, and HO-OH, and we are attempting to do exact calculations from a well-defined potential surface that reproduce spectroscopic observations within experimental uncertainty. We report here the results of our calculations on HCN, where we are at present reproducing all the ca. 100 observed vibrational states for all observed isotopic species, with energies up to 18000 cm⁻¹, to about ± 1 cm⁻¹, and the corresponding rotational constants to about ± 0.001 cm⁻¹.

Other workers have also been applying these methods, although so far only for 3-atomic molecules and using somewhat different techniques (see, for example, Whitehead & Handy 1975; Carney et al. 1978; Sutcliffe 1982; Tennyson & Sutcliffe 1982; Burden & Quiney 1984; Bačič & Light 1987, 1989; Jensen 1983, 1988 a, b, 1989). Tennyson et al. (this Symposium) are reporting variational calculations of a different type at this meeting. Our own program has been developing over the past few years, as we have reported in previous publications (Carter et al. 1983; Carter &

Handy 1982, 1986 a, b; Senkowitsch et al. 1989). However, this is the first paper in which we have made a serious attempt to fit a wide range of spectroscopic data on a well studied molecule up to high energy (18000 cm⁻¹) with experimental precision.

2. Method of calculation

We express the rovibrational hamiltonian as the sum of kinetic energy T and potential energy V expressed in curvilinear internal coordinates r_1 , r_2 and θ (being the C-H and C-N bond lengths and the H-C-N angle) and the total angular momentum operator \hat{J} and its molecule fixed components \hat{J}_x , \hat{J}_y and \hat{J}_z . We use basis functions constructed as products of Morse functions of r_1 and r_2 and Legendre polynomials of $\cos \theta$, multiplied by the rotational basis functions $\psi_{J,k,M}$ where J, k and M are the usual angular momentum quantum numbers. The quantum number k, the signed component of J about the molecular axis, is constrained to be equal to the vibrational angular momentum quantum number l, and the space-fixed component M is set to zero. The potential energy is set up analytically as a polynomial expansion in the morse coordinates y_1 and y_2 , and the displacement $\Delta\theta$ from linearity in the H-C-N angle. Matrix elements of the hamiltonian are calculated by Gauss quadrature. The basis is contracted through preliminary calculations using effective hamiltonians in r_1 and r_2 only, and in θ only, which are subsets of the full hamiltonian, and the final matrix of the full hamiltonian is set up and diagonalized in this contracted basis using the full rovibrational symmetry of the problem.

(i) Kinetic energy

We use the exact rovibrational kinetic energy operator T for a 3-atomic molecule, expressed in internal coordinates, derived from the quantum mechanical expression in external cartesian coordinates by using the coordinate transformation to internal coordinates and the chain rule of partial differentiation. The explicit expression for T in this form is quoted in Carter et al. (1983) and in Carter & Handy (1986). This method was originally proposed by Sutcliffe (1982), and implemented for a 3-atomic molecule by Carter & Handy (1982) and by Carter et al. (1983). It is an alternative to working through the classical kinetic energy expression, using normal coordinates, and using the Podolsky transformation, as described by Wilson et al. (1955) and by Watson (1968). This method is perhaps less elegant than the Podolsky approach, and it does not lead to any general expression for T applicable to all molecules; it requires a separate computer program for each molecular type, and the algebraic expressions are complex. However, these disadvantages are offset by the advantage that the algebra can be handled by an algebraic manipulation program as recently demonstrated by Handy (1987), who has verified the expressions for 3-atomic molecules and provided the corresponding results for all 4-atomic structures. The implementation of the method in a computer program is then relatively straightforward, and the use of curvilinear internal coordinates rather than normal coordinates is more closely related to the forms of the vibrational wavefunctions.

(ii) Potential energy

We require an analytical expression for the potential energy which is sufficiently flexible to reproduce the true potential surface with high accuracy over a wide range of coordinate space. We have chosen to use a polynomial expansion in the Morse coordinates y_1 and y_2 , and the angular displacement from linearity $\Delta\theta$, where

$$\begin{aligned} y_i &= 1 - \exp\left(-a_i \Delta r_i\right), \quad i = 1 \text{ or } 2, \\ \Delta r_1 &= r(\text{CH}) - r_{\text{e}}(\text{CH}), \quad \Delta r_2 = r(\text{CN}) - r_{\text{e}}(\text{CN}), \end{aligned} \tag{1}$$

and $\Delta \theta = \pi - \theta$. (2)

These are displacement coordinates (all three are zero in equilibrium), but the y_i are related by a nonlinear transformation to the usual bond-length displacement coordinates Δr_i in such a manner that a quadratic expression in the displacement coordinate y_i ,

$$V_i = D_e y_i^2 \tag{3}$$

is a Morse potential with bond dissociation energy $D_{\rm e}$ and Morse anharmonicity constant a_i . The relation between y_i and Δr_i is such that $\Delta r_i = 0$ corresponds to $y_i = 0$, but $\Delta r_i = +\infty$ corresponds to $y_i = +1$. Thus a polynomial expansion in y_i has the correct convergence properties at bond lengths approaching dissociation, and the cubic, quartic, and higher terms in the expansion have only to provide the small correction necessary to convert a Morse function into the true section of the potential energy function in each bond stretching coordinate.

These coordinates have been used previously by a number of authors (see, for example, Halonen & Child 1982, 1988; Halonen 1989). Their advantage in representing the potential over a conventional polynomial expansion is shown in table 1, where the coefficients that define our final potential surface for HCN are presented in three different forms as defined in the equations below:

$$V = \sum_{i,j,k} B(ijk) y_1^i y_2^j \Delta \theta^k, \tag{4}$$

$$= \sum_{i,j,k} (1/i!j!k!) F(ijk) (y_1/a_1)^i (y_2/a_2)^j \Delta \theta^k, \tag{5}$$

$$= \sum_{i,j,k} (1/i!j!k!) f(ijk) \Delta r_1^i \Delta r_2^j \Delta \theta^k.$$
 (6)

The coefficients B(ijk) have dimensions of energy, and are given in the first column of table 1 in E_h , where 1 $E_h = 1$ hartree = 4.359748 aJ. The coefficients F(ijk) have dimensions (energy)/(length)ⁿ, where n = i+j; they are given in the second column of the table in aJ Å⁻ⁿ†. Equations (5) and (6) are written in the form of a Taylor series expansion in the coordinates, which is the origin of the factor (1/i!j!k!). Thus

$$F(ijk) = i!j!k!a_1^i a_2^j B(ijk). (7)$$

For example,

$$F(320) = 12a_1^3 a_2^2 B(320),$$

or
$$[F(320)/(aJ Å^{-5})] = (12)(1.886098)^3(2.244737)^2(4.359748)[B(320)/E_h]$$

The coefficients f(ijk) have the same dimensions as the F(ijk); they are given in the third column of the table in the same units as the Fs, i.e. aJ Å⁻ⁿ. For the quadratic force constants (i+j+k=2) the F(ijk) and the f(ijk) are identical (because $y_i/a_i = \Delta r_i$ for small displacements), but for higher power terms the relations are obtained by using equation (1) to expand y_1 and y_2 in terms of Δr_1 and Δr_2 and substituting in equation (5). For example,

$$f(320) = 12a_1^3 a_2^2 \{B(320) - B(220) + \frac{1}{6}B(120) - \frac{1}{2}B(310) + \frac{1}{2}B(210) - \frac{1}{12}B(110)\}.$$
 (8)

†
$$1 \text{ Å} = 10^{-10} \text{ m} = 10^{-1} \text{ nm}.$$

Table 1. Parameters defining our final potential surface for HCN

(See text equations (4), (5) and (6). The B(ijk) values should be taken as definitive, with $a_r =$ 1.886098 Å⁻¹ and $a_R = 2.244737$ Å⁻¹. The indices i, j and k define the powers of coordinates associated with $\Delta r(\mathrm{CH})$, $\Delta R(\mathrm{CN})$, and $\Delta \theta$ respectively. Force constants marked * were refined in the least squares calculation.)

(ijk)	$B(ijk)/E_{ m h}$	$F(ijk)/({ m aJ~\AA^{-n}})$	$f(ijk)/({ m aJ~\AA^{-n}})$
(200)	0.2013000	6.24401	f_{rr} 6.2440
(110)	-0.0108352	-0.20000	$egin{array}{ll} f_{rr} & 6.2440 \ f_{rR} & -0.2000 \end{array}$
(020)	0.4248417	18.66593	f_{RR} 18.6660
(300)	-0.0002253	-0.03954	$f_{rrr} = -35.3700$
(210)	-0.0048431	-0.33722	f_{rrR} 0.0400
(120)	-0.0004700	-0.03895	f_{rRR} 0.4100
(030)	-0.0008436	-0.24960	f_{RRR} -125.9500
(400)*	0.0193775	25,65828	f_{rrr} 181.5913
(310)*	-0.0043949	-1.73149	$f_{rrrR} = -0.5349$
(220)*	0.0030858	0.96460	f_{rrRR} 0.9483
(130)*	0.0007613	0.42484	$f_{rRRR} = -0.3206$
(040)*	0.0037820	10.04746	f_{RRR} 671.7925
(500)*	0.0042663	53.27401	- -1062.5595
(410)*	-0.0052727	-15.67214	-3.1329
(320)*	-0.0004324	-0.76481	= -5.1607
(230)*	-0.0000718	-0.15114	-7.7414
(140)*	-0.0026729	-13.39312	- = 18.2267
(050)*	0.0002364	7.04884	
(600)*	0.0050242	709.98058	
(510)*	-0.0051484	-144.31181	- 28.6991
(420)	0.00^{a}	*00.00	39.9690
(330)*	-0.0000799	-0.95170	- 41.5584
(240)	0,00 ^a	*00.0	- 74.2507
(150)*	0.0002227	12,52434	
(060)*	-0.0001325	-53.21121	- 17 946.0818
(002)	0.0297734	0.25961	$f_{ heta heta}$ 0.2596
(102)	-0.0115531	-0.19000	$f_{r\theta\theta}^{\sigma\sigma} = -0.1900$
(012)	-0.0332090	-0.65000	$f_{R\theta\theta}$ -0.6500
(202)*	-0.0040501	-0.25126	$f_{rr heta heta}^{rr heta}$ 0.1071
(112)*	0.0065146	0.24050	$f_{rB\theta\theta} = 0.2405$
(022)*	-0.0080516	=0.70751	$f_{RR\theta\theta} = 0.7516$
(004)*	0.0003639	0.03808	$f_{\theta\theta\theta\theta}$ 0.03808
(006)*	-0.0001552	-0.48718	= 0.48718

^a These two constants were kept constrained to zero in the refinement.

The f(ijk) are the conventional anharmonic force constants, as used, for example, by Strey & Mills (1973) in their anharmonic force constant calculation on HCN. The $F_{\rm S}$ are comparable with the fs, but they show the advantage of representing the potential in Morse coordinates y_i rather than bond length displacements Δr_i . Thus all the higher power Fs are much smaller (of the order 5% or less) than the corresponding fs. The polynomial expansion in the ys converges more rapidly than in the Δr s, and gives a true representation of the potential surface over a wider range with fewer terms. There are altogether 33 parameters in our specification of the potential energy surface, namely a_1 , a_2 , and 31 Bs (or Fs). The way in which these were chosen for our final potential is described in the following section. In the subroutine in our program the energy was calculated from the Bs using equation (4).

(iii) Basis functions

As in our earlier work, we have chosen the vibrational basis functions to be products of Morse oscillator eigenfunctions in the two stretching coordinates and Legendre polynomials (for k=0) or associated Legendre polynomials (for $|k| \ge 1$) in the angle bend. These are multiplied by the usual symmetric top rotational functions of the Euler angles to give a complete set of rovibrational basis functions. A complete basis function might thus be written symbolically in the form (note that we are numbering the stretching coordinates 1 and 2, and the bending coordinate 3, contrary to spectroscopic convention)

$$\Phi(n_1, n_2, n_3, J, M, k) = \phi_{n_1}(r_1) \phi_{n_2}(r_2) \phi_{n_3}(\theta) \psi_{JMk}(\alpha, \beta, \gamma).$$
 (9)

However, for the bond stretching coordinates of HCN we chose to use Morse functions of Q_1 and Q_2 rather than of Δr_1 and Δr_2 , where the Q_i are the mass adjusted normal coordinates obtained from a preliminary harmonic force field calculation for each isotopic species considered. When combined with the contraction procedure described below this resulted in stretching basis functions closer to the true vibrational eigenfunctions over the range we have considered. Our normalized Morse basis functions are thus given by the equations

$$\phi_n(Q_i) = N_n e^{-\frac{1}{2}\xi_i} \xi_i^s L_n^{2s}(\xi_i), \tag{10a}$$

$$N_n = [\alpha n! (2s-n)/\Gamma(k-v)], \tag{10b}$$

$$s = \left[(2m_i D_{ei})^{\frac{1}{2}} / \hbar \alpha_i \right] - (n + \frac{1}{2}), \tag{11}$$

$$\xi_{i} = 2[(2m_{i}D_{ei})^{\frac{1}{2}}/\hbar\alpha_{i}]\exp{(-\alpha_{i}Q_{i})}, \tag{12}$$

$$Q_i = \sum_{j} (L^{-1})_{ij} \Delta r_j, \quad i, j = 1, 2.$$
 (13)

The $L_n^{2s}(\xi_i)$ in equation (10a) are associated Laguerre polynomials, and N_n are normalization constants. The effective masses m_i associated with the coordinates Q_i are actually 1 (because the Q_i are mass adjusted). The parameters α_i and D_{ei} that characterize the Morse function in Q_i are listed in table 2; they were chosen to match the approximate Morse characteristics of the dominant bond stretch in each normal coordinate. The L matrix elements used to define the transformation in equation (13) for each isotopic species, and the assumed molecular geometry, are also listed in table 2.

Table 2. Parameters used to define the structure and the primitive basis functions for various isotopic species of HCN

 $(r_{\rm e}({\rm CH})=r_1=1.0655~{\rm \AA},~r_{\rm e}({\rm CN})=r_2=1.1532~{\rm \AA}.~L$ matrix elements used to define the stretching normal coordinates, $\Delta r_i=L_{ij}\,Q_j$, where r_1 and r_2 denote displacements in $r({\rm CH})$ and $r({\rm CN})$; and α_i parameters used to define the Morse basis functions, equations (11, 12).)

	1-12-14	1-13-14	1-12-15	2-12-14
$L_{11}/\mathrm{u}^{rac{1}{2}}$	1.0246	1.0236	1.0246	0.6788
$L_{12}^{11}/\mathrm{u}^{rac{1}{2}}$	0.1604	0.1460	0.1604	0.3451
$L_{21}^{12}/\mathrm{u}^{rac{1}{2}}$	-0.1389	-0.1270	-0.1389	-0.2688
$egin{array}{c} L_{11}/\mathrm{u}^{rac{1}{2}} \ L_{12}/\mathrm{u}^{rac{1}{2}} \ L_{21}/\mathrm{u}^{rac{1}{2}} \ L_{22}/\mathrm{u}^{rac{1}{2}} \end{array}$	0.3680	0.3636	0.3680	0.2872
$lpha_1/(u^{-rac{1}{2}}\mathring{A}^{-1}\ lpha_2/(u^{-rac{1}{2}}\dot{A}^{-1}$	1.8289	1.8943	1.8289	1.4527
$\alpha_2/(u^{-\frac{1}{2}}\dot{A}^{-1})$	0.8653	0.8588	0.8653	0.8013

Potential surface for HCN

The angular basis functions $\phi_{n3}^{(\theta)}$ are the functions $\Theta_{n3}^{l}(\theta)$ related to the associated Legendre functions P_{n3}^{l} (cos θ) by the equation

$$\Theta_{n3}^{l}(\theta) = (-1)^{l} \left[\frac{(2n3+1)(n3-l)!}{2(n3+l)!} \right] P_{n3}^{l}(\cos \theta), \tag{14}$$

see equation (1.52) in Zare (1988). For negative values of l the factor $(-1)^l$ on the right-hand side of (14) should be omitted (Zare 1988). The quantum number n_3 is related to the customary linear angle bend quantum numbers (v_3, l) by the equation

$$v_3 = 2n_3 - |l|, (15)$$

315

where l is the vibrational angular momentum about the axis, $v_3 \ge |l|$, and v_3 is of the same parity as l. The functions $\Theta^l_{n3}(\theta)$ are linked to the rotational basis functions $\psi(\alpha,\beta,\gamma) = D^J_{0k}(\beta,\gamma)$ such that l=k. (Note that k is not a good quantum number for the final eigenfunctions, although it is a good quantum number for our basis functions.) Only the rotational functions $D^J_{Mk}(\alpha,\beta,\gamma) = D^J_{0k}(\beta,\gamma)$ with M=0 are used. (It is important to ensure that consistent phase conventions are used for the bending vibrational basis functions $\Theta^k_{n3}(\theta)$ and the rotational basis functions $D^J_{0k}(\beta,\gamma)$. This particularly applies when we come to calculate transition moments and intensities.)

This choice for the angular basis functions has the desired symmetry properties at $\theta=0$ and π , but it has the disadvantage that they are not optimized to represent the bending eigenfunctions for any particular form of the bending potential, in contrast to our choice for the stretching vibrational basis functions. We therefore have to use a large number of angle bending functions in our initial formulation of the basis. This is overcome by contracting the basis as described in the following section.

At this stage a complete rovibrational basis function may be written in the form

$$\Phi(n_1, n_2, v_3, l_3; J, k) = \phi_{n_1}(Q_1) \phi_{n_2}(Q_2) \Theta_{n_3}^k(\theta) D_{0k}^J(\beta, \gamma), \tag{16}$$

where l_3 has been set equal to k. For the final basis functions we form Wang combinations of the functions (14) with positive and negative values of k, in order to make use of the full Σ^+ or Σ^- symmetry of the wavefunctions (where Σ^+ is denoted e and Σ^- is denoted f for J even, and vice-versa for J odd (see Brown *et al.* 1975)).

(iv) Calculation of matrix elements: contraction of the basis

All integrals of the kinetic energy over the vibrational coordinates were carried out numerically by one-dimensional Gauss quadrature (Golub & Welsch 1969). The integrals over the rotational matrix elements were calculated analytically using standard angular momentum formulae. For the Morse stretching basis functions the Gauss integration points were expressed in terms of the variable ξ_i , and for the angle bending functions in terms of the variable $\cos \theta$.

For the integrals over the potential energy we used a modified integration procedure based on a combination of the method of Harris et al. (1965), the HEG method, and a scheme proposed by Schwenke & Truhlar (1984). In the HEG method the eigenvalues of the matrix of each coordinate in the chosen basis functions are used to determine the quadrature points, and in the Schwenke & Truhlar scheme the weights associated with these points are obtained by solving a set of linear equations constructed from the basis functions and the particular quadrature points used. This procedure produces quadrature points and weights superior to the original Gauss

points and weights, for basis functions chosen to be close to the true eigenfunctions, since they are optimized to the potential via the optimized basis functions. Further details of our Gauss integration procedure are given in §6 of Carter & Handy (1986).

Our angle bending basis functions, being chosen as Legendre or associated Legendre polynomials, are not initially optimized to any bending potential. We therefore set up and diagonalize a preliminary one-dimensional hamiltonian over 31 bending basis functions only, for each value of k (omitting from the hamiltonian at this stage those terms that couple different values of k), and use the 13 lowest energy eigenvectors of this matrix as a contracted set of optimized bending basis functions for each k. The HEG Schwenke-Truhlar integration procedure is used only with these optimized bending functions. A similar contraction of the basis is made for the two stretching coordinates: we use 16 Morse functions in each stretching coordinate to give an initial basis of $16^2 = 256$ stretching functions, and we take the 54 lowest energy eigenfunctions of the stretching hamiltonian in this basis as a contracted set of stretching basis functions.

The 13 contracted bending functions are then combined with the 54 contracted stretching functions to give a basis of dimension $13 \times 54 = 702$ stretch-bend functions for each value of k. The eigenfunctions of the hamiltonian in this basis are used to set up the final matrix of the full hamiltonian, for each symmetry (e or f) and for each value of J, in which different values of k are coupled together. The dimensions of the basis at each stage of contraction are summarized in table 3.

Table 3. The dimensions of the basis set at successive stages of contraction (See text. A right arrow (----) is used to denote contraction by taking the lowest energy eigenfunctions of the previous basis as a new basis set.)

Q_1	Q_2	$Q_1 Q_2$ basis	θ basis	$Q_1Q_2 \epsilon$	9 basis
16×16	==	$256 \rightarrow 54$;	$31 \rightarrow 13$;		$54 \times 13 = 702$
		$Q_1Q_2\theta$ basis		${\bf symmetrized}$	$Q_1 Q_2 \theta$ basis
J=0, k	$\dot{z} = 0$:	$54 \times 13 = 702$		→ e:	702
		$54 \times 13 = 702$		e:	500
		$54 \times 13 = 702$		 f:	241
J=2, k	= 0:	$54 \times 13 = 702$]—			1000
k	= 1:	$54 \times 13 = 702$		→ f:	645
k	= 2	$54 \times 13 = 702 \rfloor \rfloor$			

These procedures of successive contraction of the basis enable us to achieve a degree of convergence that would otherwise be impossible with hamiltonian matrices of dimensions less than 1000×1000 .

(v) Convergence of results: least squares refinement procedure

The whole of the calculation described thus far proceeds from an assumed form of the potential energy, specified by the parameters described in §2(ii) above, to vibration-rotation eigenvalues and eigenfunctions (the latter being specified through the eigenvectors as linear combinations of our basis functions). By the variation theorem this yields a set of eigenvalues that must each be greater than the corresponding true eigenvalue when taken in one-to-one correspondence in order of energy (MacDonald 1933). (There is a reservation to be made about the application of this theorem to our problem: we have effectively truncated our bending

Potential surface for HCN

obs-calc	$\Delta G(v)$ $\Delta B(v)$		-0.11 0.003	-0.001	-0.26 -0.002	-0.01			-0.21 0.001	0.003		l	-0.38 0.001	-0.001	80.0				0.04 -0.002		-0.53 -0.002	0.03	0.90 0.002	0.000	0.000 89.0		-0.31 -0.002
	J = 2		720.943	721.011		_	1435.451		٠	2122.651				2814.824	2827.072	2827.072		3319.291	3504.028			3526.239 3526.239	4012.063	4012.117	4181.169		4210.353
		le	2e	11	3e	4e	5£	5e	6 e	3 <u>F</u>		7 e	&	4f	9e	2		10e	11e	99	12e	13e 7f	1 4 e	8 t	15e	16e	18e
calculated $data/cm^{-1}$	J = 1	2.958	715.045	715.066	1414.663			2099.666	2116.615	2116.656		2806.155	2808.903	2808.921				3313.421	3498.108	3498.169	3505.613		4006.200	4006.217	4175.336	4177.661	4204.476
alculate		le	2e	11	3e			4 e	5e	5 t		9e	7e	3f				&	$_{6}$	4ť	10e		11e	16	12e	13e	1 4 e
Ü	J=0	0.000			1411.686			2096.728				2803.160						3310.485			3502.657				4172.419	4174.647	
		le le			2e			3e				4 e						5e			9				7e	&	
	Δ (B)	1.478222	-0.000194	0.007294	0.007607	0.006785	0.006785	-0.010072	-0.000203	0.022924	0.009675	0.015621	-0.010391	-0.002908	0.014742	0.014742	0.012104	-0.010424	-0.000222	0.039383	-0.002746	-0.003554	-0.010473	-0.002911	-0.020190		-0.010332
observed $data/cm^{-1}$	B(eff)	1.478222	1.478028	1.485516	1.485829	1.485007	1.485007	1.468150	1.478019	1.501146	1.487897	1.493843	1.467831	1.475314	1.492964	1.492964	1.490326	1.467798	1.478000	1.517605	1.475476	1.474668	1.467749	1.475311	1.458032		1.467890
	sym	e	(0)	٠ -	(0)	е	.	e	е	J	et	e	. •	J	e	f	et	е	e	Ţ	Ф	et	e	f	e		e
HCN 1-12-14,	G(v)	0.00	713.46		1411.43	1432.47		2096.85	2114.94			2802.96	2807.06		2824.16			3311.48	3496.69		3502.13	3522.78	4005.64		4173.10		4202.71
_	assignment	0 00 0	0.1°	-	$0.2^{0}0$	$0.2^{2} 0$		$10^{0}0$	0.3^{1}		$0.3^{3} 0$	$0.4^{0}0$	$1 \ 1^1 \ 0$		$04^{2}0$		$04^{4}0$	0.0^{0} 1	$0.5^{1}0$		$1.2^{0}0$	$12^{2}0$	0.1^{1} 1	1	$2\ 0^{0}\ 0$	0_{0}	$13^{1}0$
	assign	W	, <u></u>	1	W	V		W	Ш		Ф	M	П		4		L	W	П		W	4		;	M	M	ш

Phil. Trans. R. Soc. Lond. A (1990)

317

318

S. Carter, N. C. Handy and I. M. Mills

observe	HCN 1-12-14, observed data/cm ⁻¹				calcula	calculated data/cm ⁻¹	1.		sqo	obs-calc
уm	$B(\mathrm{eff})$	Δ (B)		J=0		J = 1		J=2	$\Delta G(v)$	$\Delta B(v)$
	1.475001	-0.003221			•		20e	4707.167	06.0	
					16 P	4859 696	111 21e	4707.167 4865634		
					7f	4859.776	12f	4865.874		
	1.457578	-0.020644			17e	4881.490	22e	4887.317	-0.30	0.001
	1.400000	-0.013210	10e	4887.876	<u>8</u> ∝	4881.507 4890.850	131 23e	4887.369	0.14	0.000
					19e	5369.518	25e	5375.396	-2.66	
					Эб	5369.551	15f	5375.499		
e	1.457936	-0.020286	11e	5392.951	20e	5395.866	26e	5401.697	0.75	0.000
			12e	5526.270	21e	5529.302	27e	5535.360		
е			13e	5572.170	22e	5575.103	29e	5580.969	-0.28	
					23e	5579.459	30e	5585.347		
					10f	5579.518	17f	5585.522		
			14e	6037.162	24e	6040.129	32e	6046.063	-0.16	
е	1.457748	-0.020474			25e	6085.949	34e	6091.776	0.31	0.001
					11f	6085.966	20f	6091.826		
e	1.447804	-0.030418	15e	6226.997	27e	6229.894	36e	6235.686	1.59	0.000
					29e	6270.682	38e	6276.516		
	1				131	6270.717	221	6276.531		
e	1.457084	-0.021138	17e	6518.808	30e	6521.721	40e	6527.547	0.80	0.001
e			18e	6760.681	32e	6763.614	42e	6769.478	0.65	
e	1.457181	-0.021041			37e	7195.148	50e	7200.973	0.54	0.001
J	1.464876	-0.013346			17f	7195.163	30t	7201.020		0.001
e	1.448051	-0.030171	22e	7454.644	40e	7457.540	54e	7463.331	0.78	0.000
					48e	8144.669	$_{999}$	8150.458		
					22f	8144.685	40f	8150.505		
е			28e	8260.412	50e	8263.287	69e	8269.038		
е	1.447430	-0.030792	30e	8585.183	55e	8588.077	75e	8593.865	0.39	0.000
е	1.447380	-0.030842			65e	9259.113	$_{00}$	9264.898	-0.10	0.001
٠.	1.455182	-0.023040			30£	9259 130	r r f	070 7960		0000
	s sym (start of the control of the c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} & \Lambda (B) \\ & -0.003221 \\ & -0.020644 \\ & -0.013216 \\ & -0.020474 \\ & -0.021041 \\ & -0.021041 \\ & -0.031346 \\ & -0.030792 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.030842 \\ & -0.0308442 \\ & -0.008444 \\ & -0.00844$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A (B) \qquad J = 0$ -0.003221 -0.020644 -0.013216 $10e 4887.876$ $-0.020286 11e 5392.951$ $12e 5526.270$ $13e 5572.170$ $13e 5572.170$ $14e 6037.162$ -0.020474 $-0.021138 17e 6518.808$ -0.021041 -0.021041 -0.013346 $-0.030792 30e 8585.183$ -0.030842 -0.030842	$ \Delta (B) \qquad J = 0 $ $-0.003221 $ $-0.020644 $ $-0.013216 $ $10e 4887.876 $ $-0.020286 11e 5392.951 $ $12e 5526.270 $ $13e 5572.170 $ $13e 5572.170 $ $14e 6037.162 $ $-0.020474 $ $-0.021041 $ $-0.021041 $ $-0.021041 $ $-0.021041 $ $-0.030418 17e 6518.808 $ $-0.030418 12e 6760.681 $ $-0.031346 $ $-0.030792 30e 8585.183 $ $-0.030842 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta (B) \qquad J = 0 \qquad J = 1 \qquad J$ $-0.003221 \qquad 16e 4859.696 21e 1f 4859.776 12f 4859.776 12f 4859.776 12f 4859.776 12f 4881.507 12f 5392.951 20f 5395.866 26f 26$	$ \Delta (B) \qquad J = 0 \qquad J = 1 \qquad J = 2 \qquad \Delta G(v) $ $ -0.003221 \qquad 16e 4859.696 21e 4865.634 $ $ -0.020644 \qquad 17e 4881.490 22e 4887.317 -0.30 $ $ -0.020644 \qquad 17e 4881.490 22e 4887.817 -0.30 $ $ 19e 5389.776 13f 4887.396 -2.66 $ $ -0.020644 \qquad 17e 4881.490 22e 4887.896 -0.036 $ $ 19e 5389.561 13f 4887.396 -2.66 $ $ 19e 5389.561 13f 5375.396 -2.66 $ $ 19e 5389.561 12e 5375.396 -2.66 $ $ 13e 5572.170 22e 5575.469 32e 5585.347 $ $ -0.020474 \qquad 12e 5529.302 27e 5535.396 -0.28 $ $ 13e 5572.170 22e 55779.459 32e 6046.083 -0.16 $ $ -0.020474 \qquad 12e 6040.129 32e 6046.083 -0.16 $ $ -0.020474 \qquad 12e 6226.997 27e 6229.894 34e 6091.776 0.31 $ $ 11f 6085.966 20f 6091.826 $ $ -0.030418 15e 6226.997 27e 6229.894 34e 6091.776 0.31 $ $ 13f 6270.717 22f 6276.531 $ $ -0.021138 17e 6518.808 30e 6521.721 40e 6527.547 0.80 $ $ 18e 6760.681 32e 6763.614 42e 6769.478 0.65 $ $ -0.03174 22e 7454.644 44e 7445.740 54e 7463.331 0.78 $ $ 22f 8144.669 66e 8150.458 $ $ -0.030842 30e 8585.183 55e 8269.038 $ $ -0.030842 30e 8585.183 55e 8269.038 $ $ -0.0130842 30e 8585.183 65e 9259.193 55f 9349.494 $

Potential	surface	for	HCN

319

		HCN 1-12-14, observed data/cm $^{-1}$	observe	d data/cm ⁻¹				calcula	calculated data/cm ⁻¹	-1		sqo	obs-calc
assig	assignment	G(v)	sym	$B(\mathrm{eff})$	Δ (B)		J = 0		J = 1		J=2	$\Delta G(v)$	$\Delta B(v)$
Ω	$3\ 0^{0}\ 1$	9496.43	е	1.438028	-0.040194	38e	9495.302	70e	9498.178	97e	9503.928	1.13	0.000
M	$0.0^{\circ}3$	9627.08	е	1.446034	-0.032188	39e	9626.962	72e	9629.852	966	9635.633	0.12	0.001
M	$12^{0}2$	9914.39	е	1.455630	-0.022592	42e	9915.109	77e	9918.021	106e	9923.844	-0.72	0.000
M	$5~0^{ m o}$		е			46e 1	10272.616	84e	10275.470	117e	10281.179		
П	0.1^13	10281.84	е	1.446345	-0.031877			85e	10283.838	118e	10289.620	-0.55	0.001
			Ŧ	1.454100	-0.024122			39f	10283.852	72f	10289.664		0.001
M	$2~0^{ m o}~2$	10631.44	e	1.437729	-0.040493	$49e^{-1}$	10631.341	92e	10634.215	127e	10639.964	0.10	0.000
M	$4\ 0^{0}\ 1$		е			59e 1	11514.756	111e	11517.612	155e	11523.322		
M	1.0^{0} 3	11674.45	e	1.436622	-0.041600		11674.682	117e	11677.555	163e	11683.299	-0.23	0.001
M	0_009		е				12256.210	131e	12266.428	183e	12265.286		
M	$0~0^{0}~4$	12635.89	e	1.434456	-0.043766	75e 1	12635.918	141e	12638.786	198e	12644.516	-0.03	0.002
M	$3~0^{0}~2$	12657.88	е	1.428169	-0.050053	76e 1	12658.228	142e	12661.084	199e	12666.794	-0.35	0.001
П	$0.1^{1}4$	13270.79	е	1.435274	-0.042948			159e	13273.676	224e	13279.412	-1.46	0.001
			4	1.443058	-0.035164			75f	13273.687	140f	13279.453		0.002
M	$5~0^{ m o}~1$		е			89e 1	13512.806	167e	13515.642	236e	13521.311		
M	$2~0^{ m o}$ $_3$	13702.25	е	1.427114	-0.051108	93e 1	13702.896	176e	13705.752	248e	13711.456	-0.65	0.001
M	$4~0^{0}~2$	14653.66	e	1.421947	-0.056275	$108e^{-1}$	14652.719	206e	14655.571	292e	14661.251	0.94	0.002
M	$10^{0}4$	14670.45	e	1.421680	-0.056542		14671.696	207e	14674.546	293e	14680.222	-1.25	0.003
M	$0~0^{ m o}~2$	15551.94	е	1.423004	-0.055218	129e 1	15552.071	243e	15554.933	346e	15560.603	-0.13	0.006
M	$30^{0}3$	15710.53	e	1.417569	-0.060653	132e 1.	15711.721	251e	15714.569	356e	15720.224	-1.19	0.004
П	$6 1^1 1$	16165.55	е	1.420214	-0.058008			267e	16164.117	380e	16169.731	2.85	0.017
			Ŧ	1.427674	-0.050548			128f	16164.121	241f	16169.782		0.012
	0.1^15	16165.55	е	1.420214	-0.058008			268e	16169.560	381e	16175.233	-2.59	0.002
			Ţ	1.427674	-0.050548			129f	16169.546	242f	16175.267		-0.003
M	$5~0^{ m o}~2$	16640.31	е	1.409760	-0.068462	$150e^{-1}$	16639.015	287e	16641.848	410e	16647.480	1.30	0.002
M	$2~0^{ m 0}~4$	16674.21	е	1.414731	-0.063491		16675.853	290e	16678.700	413e	16684.344	-1.64	0.004
M	$1~0^0~5$	17550.39	e	1.414119	-0.064103	175e 1	17549.587	333e	17552.612	478e	17558.107	0.81	0.040
M	$9~_00~0$	18377.01	е	1.411041	-0.067181	198e 1	18376.543	378e	18379.586	542e	18385.029	0.46	0.050
M	0 0 0 0	0.00	е	1.439995	1.439995	1e	0.000	1e	2.881	1e	8.643	0.00	0.000
П	$0 \ 1_{1} \ 0$		е					2e	708.960	2e	714.706		
ı	((Ŧ				1	1f	708.979	1f	714.768		
M	$0.5^{\circ}0$		o.			5e	1400.039	3e	1402.937	3e	1408.730		

320	S. Carter,	N. C.	Handy	and I .	M. Mills

assignment $G(v)$ sy considerable $G(v)$ sy	observed	HCN 1-12-14, observed data/cm ⁻¹			ŭ	alculate	calculated data/cm ⁻¹			-sqo	obs-calc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sym	$B(\mathrm{eff})$	Δ (B)		J=0	REMOVED TO LAKE A LAKE	J=1		J=2	$\Delta G(v)$	$\Delta B(v)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e e							4e	1423.337		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4			ď	990	Ţ	1000	2f	1423.338		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e			e Se	2062.933	4e	2065.794	Se Se	2071.515		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 4					of of	2099.367	ee 3	2105.123		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н Ф	1 429701	-0.010294			7 e	2.099.405 $2.768.579$	31 7e	2105.238 2774.295	-0.41	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	٠ بــا	1.436897	-0.003098			3£	2768.595	4f	2774.344		0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e	1.430365	-0.009630	5e	3292.551	8	3295.411	10e	3301.132	0.96	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e					11e	3982.742	14e	3988.455	-0.52	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ŧ					5	3982.758	J8	3988.506		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e	1.436905	-0.003090	9e	4655.281	15e	4658.155	19e	4663.904	0.58	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ө							20e	4678.226	5.43	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ţ							11f	4678.226		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ө	1.420805	-0.019190	11e	5343.011	20e	5345.853	26e	5351.535	0.65	0.000
$\begin{array}{ccccc} 0.0^{\circ} & 2 & 6483.28 \\ 0.1^{\circ} & 2 & 7154.49 \\ 1.0^{\circ} & 2 & 8519.24 \\ 0.0^{\circ} & 3 & 9571.69 \\ 1.0^{\circ} & 11591.42 \\ 0.0^{\circ} & 5 & 15455.20 \\ 3.0^{\circ} & 3 & 15572.80 \\ 0.1^{\circ} & 5 & 16067.52 \\ 2.0^{\circ} & 4 & 16544.28 \\ 1.6^{\circ} & 5 & 17431.94 \\ 0.0^{\circ} & 0 & 1257.21 \\ 0.0^{\circ} & 0 & 0.00 \\ 0.1^{\circ} & 0 & 0.00 \\ \end{array}$	e					25e	6029.978	34e	6035.656	-1.19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ţ					111f	6029.994	20f	6035.705		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e	1.348815	-0.091180	17e	6482.505	30e	6485.345	40e	6491.025	0.77	-0.071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	е					37e	7153.933	50e	7159.610	-0.86	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ţ	4				17f	7153.948	30t	7159.656		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e	1.411076	-0.028919	30e	8519.024	55e	8521.846	75e	8527.489	0.21	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	е	1.410233	-0.029762	41e	9571.544	75e	9574.363	104e	9580.001	0.14	0.001
$\begin{array}{cccc} 0.0^{\circ} 5 & 15455.20 \\ 3.0^{\circ} 3 & 15572.80 \\ 0.1^{1} 5 & 16067.52 \\ 2.0^{\circ} 4 & 16544.28 \\ 1.6^{\circ} 5 & 17431.94 \\ 0.0^{\circ} 6 & 18257.21 \\ 0.0^{\circ} 0 & 0.00 \\ 0.1^{1} 0 & 0.00 \end{array}$	e	1.401195	-0.038800	63e	11591.860	118e	11594.662	165e	11600.264	-0.44	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	е	1.388841	-0.051154	131e	15455.018	247e	15457.812	351e	15463.345	0.18	0.00
$\begin{array}{cccc} 0 & 1^1 & 5 & 16067.52 \\ 2 & 0^0 & 4 & 16544.28 \\ 1 & 6^0 & 5 & 17431.94 \\ 0 & 0^0 & 6 & 18257.21 \\ 0 & 0^0 & 0 & 0.00 \\ 0 & 1^1 & 0 & 0.00 \end{array}$	е	1.382539	-0.057456	132e	15574.550	251e	15577.327	356e	15582.842	-1.75	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	е	1.386339	-0.053656			272e	16069.547	386e	16075.082	-0.64	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f	1.393416	-0.046579			130f	16069.533	244f	16075.116		-0.002
$ \begin{array}{cccc} 16^{0} & 5 & 17431.94 \\ 00^{0} & 6 & 18257.21 \\ 00^{0} & 0 & 0.00 \\ 01^{1} & 0 & 0.00 \end{array} $	е	1.381607	-0.058388	151e	16540.302	290e	16549.083	413e	16554.593	-1.53	0.004
$\begin{array}{ccc} 0.0^{\circ} & 6 & 18257.21 \\ 0.0^{\circ} & 0 & 0.00 \\ 0.1^{1} & 0 & 0.00 \\ \end{array}$	е	1.380128	-0.059867	176e	17431.396	336e	17434.346	482e	17439.714	0.54	0.038
$\begin{array}{ccc} 0 & 0^{0} & 0 & 0 & 0 & 0 \\ 0 & 1^{1} & 0 & & & & & \end{array}$	e	1.377695	-0.062300	198e	18256.131	379e	18259.101	543e	18264.415	1.08	0.049
0.1^{1}	е	1.435248	1.435248	1e	0.000	1e	2.872	1e	8.616	0.00	-0.001
						2e	714.004	2e	719.730		
						Ħ	714.024	1ŧ	719.796		

Potential	surface	for	HCN
-----------	---------	-----	-----

								P^{ϵ}	ote	nt	ial	s	ur_j	fac	e ,	for	· F	łС	N													321
obs-calc	$\Delta B(v)$		-0.001		0.001	-0.001	0.000	0.001	0.001	0.000	0.002	0.000	-0.001			0.007	-0.004		0.000	0.001	0.000	0.000	-0.002			0.001	0.000			0.001		
sqo	$\Delta G(v)$		0.14		88 0-	0.00	1.00	0.83	0.19	0.00	-0.18		-0.41	-0.22		-1.36			0.08	-0.09		1.62	-0.17	-0.07		1.13		-0.05		0.60	0.76	
	J=2	1418.248	2072.765	2119.150	2781 155	2781.207	3317.639	6524.155	9629.971	7.249	576.465	576.516	1137.712	1145.417	1145.417	1698.655	1698.754		1932.395	2504.437	2504.485	2635.863	3068.114	3075.963	3075.963	3189.728	3189.764	3631.258	3631.356	3735.779	3743.369	3743.369
		3e	5e	6e 3f	1.	4f	10e	40e	104e	1e	2e	11	3e	4e	2f	$\tilde{5}e$	3f		6 e	ъ	1	10e	12e	13e	1	14e	8 t	17e	10f	18e	19e	11f
calculated data/cm ⁻¹	J=1	1412.469	2067.061	2113.413	9775458	2775.475	3311.939	6518.498	9624.357	2.416	571.638	571.654	1132.840			1693.810	1693.842		1927.589	2499.634	2499.650	2631.075	3063.269			3184.934	3184.946	3626.438	3626.471	3730.954		
alculate		3e	4 e	5e	1 e	3£	æ	30e	75e	1e	2e	1f	3e			4e	2f		5e	<u>7</u> e	3f	&	10e			11e	$_{ m jg}$	13e	$_{ m fg}$	14e		
8	J=0	1409.57	2064.208				3309.089	6515.669	9621.550	0.000			1130.403						1925.186			2628.681	3060.846							3728.542		
		2e	3e				5e	17e	41e	1e			2e						3e			5e	9e							8 e		
	Δ (B)		-0.010028		-0.009916	-0.002844	-0.010028	-0.020305	-0.030888	0.000000	0.001216	0.007428	0.008899	0.008513		0.010165	0.016533	0.012619	-0.006550	-0.005623	0.000760	-0.010338	0.001908	0.001554		-0.008755	-0.002704			-0.000809	-0.001190	
d data/cm ⁻¹	B(eff)		1.425220		1 495339	1.432404	1.425220	1.414943	1.404360	1.207751	1.208967	1.215179	1.216650	1.216264		1.217916	1.224284	1.220370	1.201201	1.202128	1.208511	1.197413	1.209659	1.209305		1.198996	1.205047	not obs		1.206942	1.206561	
observe	sym		е		۵	٠	. ө	e	е	е	е	Ţ	е	ef		е	Ţ	ef	e	Э	Ţ	ef	е	ef		е	.	ef		e	ef	
HCN 1-12-14, observed	G(v)		2064.35		9773 65		3310.09	6516.50	9621.74	0.00	570.26		1129.99	1142.77		1691.24		1717.54	1925.27	2498.35		2630.31	3060.68	3073.47	,	3184.87		3625.16		3729.14	3741.72	
Ĥ 	assignment	0 20 0	$1\ 0^{0}\ 0$	$0\ 3^{1}\ 0$	1 110	•	0.0^{0} 1	$0~0^{ m o}~2$	$0.0^{\circ}3$	0 00 0	$0.1^{1}0$		$0.2^{0}0$	$0.2^{2} 0$		0.3^{1}		$0.3^{3} 0$	$1\ 0^{0}\ 0$	$1 \ 1^1 \ 0$		0.0^{0} 1	$12^{0}0$	$12^{2}0$		$0.1^{1}.1$		$13^{1}0$		0.2^{0} 1	$0.2^2 1$	
	assign	M	M	П	⊏	:	M	W	M	M	П		M	◁		П		Ф	M	ш		M	M	ಶ		П		П		W	4	

B(v)

G(v)

J = 2

obs-calc

S. Carter, N. C. Handy and I. M. Mills

 $\begin{array}{c} 0.000 \\ 0.001 \\ 0.000 \\ 0.001 \end{array}$

4528.322 5085.000 5085.038 5224.820 5763.390 5763.423

 $\begin{array}{c} 0 \ 0^0 \ 2 \\ 0 \ 1^1 \ 2 \end{array}$

 \square

 $-0.001\\0.001\\0.000$

4418.412 4418.460 3843.669

1			20e	25e	15f	28e	35e	21f	36e	46e	27f
ealenlated data/em ⁻¹		J = 1	3838.889	4413.636	4413.652	4523.558	5080.232	5080.245	5220.074	5758.635	5758.646
alenlate			15e	19e	J6	21e	26e	12f	27e	34e	15f
,		J=0	9e 3836.499			4521.177			5217.701		
			9e			12e			15e		
		$\Delta(B)$	-0.013631	-0.012545	-0.005889	-0.016610	-0.015179	-0.008969	-0.020695		
d data/cm ⁻¹		$B(\mathrm{eff})$	1.194120	1.195206	1.201862	1.191141	1.192572	1.198782	1.187056	not obs	
observe		sym	e	е	Ţ	е	е	Ţ	е	ef	
DCN 2-12-14. observed data/cm ⁻¹	,	G(v)	3836.35	4412.18		4523.27	5080.66		5220.24	5759.08	

Table 4. (cont.)

Phil. Trans. R. Soc. Lond. A (1990)

 $\begin{array}{c} 2 \ 0^{0}0 \\ 2 \ 1^{1} \ 0 \end{array}$

assignment

 $\frac{1}{1} \frac{0^0}{1^1} \frac{1}{1}$

vibrational basis set at somewhere around $v_2 = 24$, so that our calculations will be lacking some high bending states above $10\,000 \text{ cm}^{-1}$, but it seems unlikely that this would significantly affect our calculation of the high energy stretching states listed in table 4.)

From trial calculations in which we have varied the size of the basis set we believe that in the final calculations reported below all of the eigenvalues are converged to within $1~\rm cm^{-1}$ (i.e. errors in our calculation of the eigenvalues due to limitations of the basis set are all less than $1~\rm cm^{-1}$), and we believe the lower eigenvalues are converged to within $0.1~\rm cm^{-1}$. Furthermore we believe that differences between J=0, 1 and 2 for the same vibrational state (corresponding to the rotational constant B in the particular vibrational state) are converged within $0.002~\rm cm^{-1}$. It is to be expected that such differences will be more accurately calculated than the absolute energies, because they are sensitive to terms in the hamiltonian representing rotational effects but relatively insensitive to the vibrational energy terms. Similar comments apply to our calculation of parity doubling effects (l doubling and l resonance, i.e. the splitting of e from f levels of the same J and |k| within the same vibrational state).

We have, finally, enclosed the entire calculation within a least squares procedure to refine the parameters (or a selection of parameters) in the potential to fit the observed energy levels. However, these calculations are computer-intensive, even before we build them into a least squares refinement procedure. The logistical limitations have so far restricted us to refining the potential to fit only the J=0 eigenvalues for a single isotopic species (the parent HCN molecule, with mass numbers 1-12-14). However, we carry out the forwards calculation from an assumed potential to eigenvalues and eigenfunctions for J=0, 1 and 2 for all the isotopic species on which data have been reported.

3. Results

The results of our calculations are shown in tables 1–4. Table 1 gives the parameters that define our final refined potential surface; table 2 gives parameters involved in setting up the basis functions; table 3 gives details of the dimensions of the basis sets; and table 4 gives a comparison between our calculated energy levels and those observed spectroscopically, all energies being expressed as vibration-rotation term values T referred to J=0 in the ground vibrational state for each isotopic species. The spectroscopic data are taken from Smith $et\ al.\ (1989)$ and references found therein. The states are labelled with the customary quantum numbers $(v_1,v_2^{l_2},v_3)$, where v_1 is the excitation in the CN stretch, $v_2^{l_2}$ in the bend, and v_3 in the CH stretch, in the customary (but illogical) spectroscopic convention. (This numbering is adopted in table 4 notwithstanding the different numbering of the internal coordinates adopted in §2 and in table 1 of this paper.)

For J=0 we calculate only Σ vibrational states; for J=1 we calculate Σ and Π states; and for J=2 we calculate Σ , Π and Δ states. Since we do not calculate states above J=2, we do not calculate any vibrational states of symmetry Φ or higher. The rotational constants are calculated as $B=\frac{1}{4}\{T(J=2)-T(J=1)\}$ for Σ and Π states (we cannot calculate B for Δ states without going to J=3). We could equally calculate B from the difference between J=1 and 0, but the results are identical to within ± 0.001 cm⁻¹, and we do not believe our calculated term values are reliable to any higher precision. The term values in table 4 are given separately for the e and

f symmetry components of each Π and Δ state; the difference gives the effective l doubling in the Π states. The final two columns of table 4 give the differences (observed – calculated) for the vibrational band origins and the rotational constants, respectively, for each vibrational state.

In the calculated term values shown in table 4, the eigenvalue number and symmetry label (e or f) are shown in the column immediately to the left of each calculated term value. Thus, for example, the Σ vibrational states at 17549.6 and $18376.5 \,\mathrm{cm^{-1}}$ are the 175th and 198th eigenvalues, respectively, from the J=0matrix (of dimension 701×701). In table 4 we have only quoted calculated values for the observed states, and for a few other unobserved states that we believe may be observed in the future, or are otherwise of interest. The vibrational assignments were made automatically in our program, by identifying the largest eigenvector element.

It is well known that the rotational structure and the vibrational energy levels contain complimentary information on the potential surface. The rotational constants themselves are most sensitive to the (equilibrium) molecular geometry, which is already well known for HCN (see table 2); however, the vibrational dependence of the rotational constants is sensitive to anharmonic effects. In the perturbation treatment of anharmonicity, the leading terms in the vibrational dependence of the rotational constants, the α_r^B constants, relate to the cubic anharmonic force field. Since our present least-squares procedure is only able to refine to fit the J=0 energy levels, we chose to start from the potential surface reported by Strey & Mills (1973), determined from a perturbation calculation, for which the cubic anharmonic terms are already adjusted to reproduce the α_r^{μ} constants determined from the lower vibrational states. We have then refined the quartic and higher power terms in our potential surface, but we have not changed the quadratic and cubic terms from those reported by Strey & Mills. The potential constants that we have refined are marked in table 1. Table 4 shows that we calculate almost all of the rotational constants (and parity doubling splittings) for all isotopic species correct to ± 0.001 cm⁻¹. For vibrational states above 10000 cm⁻¹ this implies an accuracy of one part in 107, but this accuracy probably only applies to differences between closely related eigenvalues rather than to their absolute values.

Table 4 also shows that we calculate most vibrational states of all isotopic species correct to within $\pm 1 \text{ cm}^{-1}$. The exceptions are almost all at high energy. (The 5.43 cm⁻¹ discrepancy for the (0, 2², 1) state of the 1-13-14 species is probably due to an error in the spectroscopic data.) The well-known ($\Delta v_1 = -3$, $\Delta v_3 = +2$) resonance, between, for example, the levels at 14653 and 14671 cm⁻¹, is successfully fitted. Apart from this example, the HCN overtone spectrum is actually remarkably free of anharmonic resonances. Thus both the vibrational energies and the rotational structure are fit with high accuracy, and the remaining discrepancies between our calculations and the observed data are more likely to be due to errors in our potential surface than to lack of convergence in our calculations. We believe that our potential surface is the most accurate surface yet produced for the HCN molecule over the range of coordinate space to which the spectroscopic data relate.

4. Discussion

These results show that variational calculations for molecules like HCN can calculate vibrational and rotational structure up to high energy with high precision, and can be used to obtain a highly accurate potential surface. They relate the potential

surface directly to the spectrum for all isotopic species, and they incorporate all resonances (Fermi, Coriolis, Darling–Dennison, etc.) without special treatment. Wavefunctions are available (as linear combinations of the basis functions), and can be used to calculate transition intensities if the dipole moment surfaces are known; we are planning to do this for HCN in the near future. Similar calculations have been done by Jensen (1988b) for the CH₂ molecule, with great success. Reliable absolute intensity measurements are notoriously difficult to make experimentally, and it may well prove that the *ab initio* calculation of intensities by this method will prove to be an important technique.

However, variational calculations of rovibrational states have a number of limitations. A limitation of this work is that our results do not span the HNC minimum in the potential surface. The spectroscopic data on this molecule are confined to two well separated regions, one around the HCN minimum (going up to $v_2 = 5$ and $l_2 = 3$ in the bending mode), and one around the HNC minimum (where even less is known about excited bending states). The high precision and high quality fit of our calculation depends on using highly optimized basis functions, and it would be difficult to find such functions to span the whole of the HCN/HNC surface. Bačić & Light (1987) have in fact reported variational calculations on this molecule that range from the HCN to the HNC minimum, using a discrete variable representation (DVR) with a distributed gaussian basis (DGB). The DVR-DGB technique is well suited to non-rigid molecule problems that span a wide range of coordinate space, but it has not yet been used to obtain results approaching the precision of those reported here for HCN. In particular Bačić & Light's results span the full range of the bending coordinate from HCN to HNC, but they only span 1 quantum of excitation in each of the stretching coordinates.

The other main limitation of calculations of this kind is that they are computer intensive. The technique we are using will require a new program for almost every molecule. It requires substantial time on a super-computer, and even so it is hardly practical yet to go above J=2 for HCN, or to do a least squares refinement above J=0. We are at present running a similar program for 4-atomic molecules, but full calculations over all the internal coordinates for larger molecules pose considerable problems. Nonetheless one should not underestimate the potential of variational calculations for treating the vibration–rotation problem. Recent developments in the formulation of these calculations, combined with developments in computer technology, have shown a far greater potential for applications of this method than appeared to be possible even five years ago.

We are grateful to Dr Gordon Caldow, who made significant contributions to the preliminary stages of this work. We also acknowledge the Science and Engineering Research Council for various grants in support of our research.

References

Aliev, M. & Watson, J. K. G. 1985 In *Molecular spectroscopy: modern research* (ed. K. N. Rao), vol. III, ch. 1. Academic Press.

Amrein, A., Dübal, H. R. & Quack, M. 1985 Molec. Phys. 56, 727.

Bačić, Z. & Light, J. C. 1987 J. chem. Phys. 86, 3065.

Bačić, Z. & Light, J. C. 1989 A. Rev. phys. Chem. 40, 469.

Baggott, J. E., Clase, H. & Mills, I. M. 1986 Spectrochim. Acta A 42, 319.

Beyer, T. & Swinehart, D. F. 1973 Commun. ACM 16, 379.

Brown, J. M. et al. 1975 J. molec. Spectrosc. 55, 500-503.

Burden, F. R. & Quiney, H. M. 1984 Molec. Phys. 53, 917-927.

Carney, G. D., Sprandel, L. L. & Kern, C. W. 1978 Adv. chem. Phys. 37, 305.

Carter, S. & Handy, N. C. 1982 Molec. Phys. 47, 1445-1455.

Carter, S. & Handy, N. C. 1986 a Molec. Phys. 57, 175-185.

Carter, S. & Handy, N. C. 1986b Comp. Phys. Reps 5, 117-171.

Carter, S., Handy, N. C. & Sutcliffe, B. T. 1983 Molec. Phys. 49, 745-748.

Champion, J. P., Robiette, A. G., Mills, I. M. & Graner, G. 1982 J. molec. Spectrosc. 96, 422-441

Child, M. S. & Lawton, R. T. 1981 Faraday Discuss. chem. Soc. 71, 273.

Child, M. S. & Halonen, L. 1984 Adv. chem. Phys. 57, 1.

Dübal, H.-R. & Quack, M. 1984 J. chem. Phys. 81, 3779.

Golub, G. H. & Welsch, J. H. 1969 Math. Comp. 23, 221.

Halonen, L. & Child, M. S. 1982 Molec. Phys. 46, 239-255.

Halonen, L. 1989 J. phys. Chem. 93, 3386.

Halonen, L. & Child, M. S. 1988 Comp. Phys. Comm. 51, 173-193.

Halonen, L., Kauppinen, J. & Caldow, G. L. 1984 J. chem. Phys. 81, 2257.

Handy, N. C. 1987 Molec. Phys. 61, 207-223.

Harris, D. O., Engerholm, D. O. & Gwinn, W. 1965 J. chem. Phys. 43, 1515.

Hoy, A. R., Mills, I. M. & Strey, G. 1972 Molec. Phys. 24, 1265-1290.

Jensen, P. 1983 Comp. Phys. Rep. 1, 1.

Jensen, P. 1988a J. chem. Soc. Faraday Trans. II 84, 1315.

Jensen, P. 1988 b J. molec. Spectrosc. 132, 429-457.

Jensen, P. 1989 J. molec. Spectrosc. 133, 438-460.

MacDonald, J. K. L. 1933 Phys. Rev. 43, 830.

Mills, I. M. 1972 In *Molecular spectroscopy: modern research* (ed. K. N. Rao & C. W. Mathews), ch. 3.2. Academic Press.

Mills, I. M. & Robiette, A. G. 1985 Molec. Phys. 56, 743.

Nielsen, H. H. 1951 Rev. Mod. Phys. 23, 90.

Papousek, D. & Aliev, M. R. 1982 Molecular vibrational-rotational spectra. Prague: Academia.

Schwenke, D. W. & Truhlar, D. G. 1984 Comp. Phys. Communs 34, 57.

Senekowitsch, J., Carter, S., Zilch, A., Werner, H.-J., Handy, N. C. & Rosmus, P. 1989 J. chem. Phys. 90, 783-794.

Smith, A. M., Coy, S. L., Klemperer, W. & Lehmann, K. K. 1989 J. molec. Spectrosc. 134, 134.

Stein, S. E. & Rabinovitch, B. S. 1973 J. chem. Phys. 58, 1301.

Strey, G. & Mills, I. M. 1973 Molec. Phys. 26, 129-138.

Sutcliffe, B. T. 1982 In Current aspects of quantum chemistry (ed. R. Carbo). Amsterdam: Elsevier.

Tennyson, J. & Sutcliffe, B. T. 1982 J. chem. Phys. 77, 4061.

Watson, J. K. G. 1968 Molec. Phys. 15, 479.

Watson, J. K. G. 1970 Molec. Phys. 19, 465.

Whitehead, R. J. & Handy, N. C. 1975 J. molec. Spectrosc. 55, 356.

Wilson, E. B. 1939 J. chem. Phys. 7, 1047.

Wilson, E. B. 1941 J. chem. Phys. 9, 76.

Wilson, E. B., Decius, J. C. & Cross, P. 1955 Molecular vibrations. McGraw Hill.

Zare, R. N. 1988 Angular momentum. New York: Wiley.

Discussion

N. C. Handy (Cambridge University, U.K.). The calculation of rovibrational energy levels by the variational method has made tremendous progress since the first such calculations on triatomic molecules in 1975 (Carney & Kern 1975; Whitehead &

Potential surface for HCN

327

Handy 1975). One of the first successes was the recognition that an expansion of the potential in powers of Δr through fourth order was not satisfactory; a much better representation is obtained by replacing Δr by the Simons-Parr-Finlan coordinate $(\Delta r/r)$, or the Morse coordinate $(1-e^{-\alpha\Delta r})$.

The question arises as to how one is to interpret the mass of data (many eigenvalues, each with a very long eigenvector) from such calculations. I like to consider the variational method as a theoretical spectrometer, which produces data on energy level differences in the same way as the experimental spectroscopist. One way therefore to analyse the output of the theoretical spectrometer is to do the same analysis as the experimentalist, that is to set up effective hamiltonians, etc. If such an analysis is successful, then such a model is realistic. If it is not, then the effective hamiltonian model is deficient. Finally, I would like to suggest that many of the levels that are calculated at high energy, but which are not observed in the spectrum, may correspond to 'chaotic' quantum states.

I. M. Mills. I completely agree with Dr Handy's remarks, particularly with his last comment about chaotic states. I also believe that most of these states may never be observed, due to the lack of an appropriate transition moment.

Additional reference

Carney, G. D. & Kern, C. W. 1975 Int. J. Quant. chem. Symp. 9, 317.