)\
PN

Vo \

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

[\

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSéSTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

Variational Calculations of Rovibrational States: A
Precise High-Energy Potential Surface for HCN [and
Discussion]

Stuart Carter, Nicholas C. Handy and lan M. Mills

Phil. Trans. R. Soc. Lond. A 1990 332, 309-327
doi: 10.1098/rsta.1990.0117

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at
the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1990 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;332/1625/309&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/332/1625/309.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Variational calculations of rovibrational states: a
precise high-energy potential surface for HCN
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We report the results of variational calculations of the rovibrational energy levels of
HCN for J =0, 1 and 2, where we reproduce all the ca. 100 observed vibrational
states for all observed isotopic species, with energies up to 18000 cm™, to about
+1 em™?, and the corresponding rotational constants to about +0.001 cm™. We use
a hamiltonian expressed in internal coordinates r;, r, and 6, using the exact
expression for the kinetic energy operator 7’ obtained by direct transformation from
the cartesian representation. The potential energy V is expressed as a polynomial
expansion in the Morse coordinates y; for the bond stretches and the interbond angle
0. The basis functions are built as products of appropriately scaled Morse functions
in the bond-stretches and Legendre or associated Legendre polynomials of cos 6 in
the angle bend, and we evaluate matrix elements by Gauss quadrature. The
hamiltonian matrix is factorized using the full rovibrational symmetry, and the basis
is contracted to an optimized form ; the dimensions of the final hamiltonian matrix
vary from 240 x 240 to 1000 x 1000. We believe that our calculation is converged to
better than 1 cm™ at 18000 cm™. Our potential surface is expressed in terms of 31
parameters, about half of which have been refined by least squares to optimize the
fit to the experimental data. The advantages and disadvantages and the future
potential of calculations of this type are discussed.
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1. Introduction

The calculation of vibration-rotation energy levels and wavefunctions for a
polyatomic molecule at high vibrational energy, which is closely related to our
understanding of molecular dynamics, remains a major unsolved problem in
molecular physics. In this context we assume that the potential energy surface is
given; a polyatomic molecule means three or more atoms, and high vibrational
energy means above 10000 cm™ (i.e. 120 kJ mol™), which is only about 25% of a
typical chemical bond dissociation energy.

The traditional approach to this problem is to first solve the problem of small
amplitude vibrations in the harmonic approximation (Wilson 1939; Wilson et al.
1955), and then to treat anharmonicity as a perturbation to this zeroth order model
(Nielsen 1951 ; Mills 1971; Hoy et al. 1972; Papousek & Aliev 1982; Aliev & Watson
1985). Although this method provides a framework for the analysis of vibra-
tion—rotation spectra, it fails at high vibrational excitation for two reasons. First,
the curvilinear nature of the natural coordinates of molecular vibration, and the
deviation from harmonic behaviour in the potential (particularly for the approach to
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310 S. Carter, N. C. Handy and 1. M. Mills

bond dissociation in stretching coordinates), become too large for a perturbation
treatment at high energy. It becomes necessary to pursue the perturbation theory to
high order, which leads to complex formulae and major problems of convergence in
the resulting power series expansions. Secondly, for a polyatomic molecule the
density of vibrational states grows rapidly at high energy, and the perturbations lead
to increasingly frequent resonances for which the interactions are stronger than the
separations between the zeroth-order states. The usual approach to this problem is
to first treat the weak interactions by perturbation theory, using a contact
transformation to obtain a hamiltonian matrix which is blocked into resonating
polyads, and then to diagonalize these remaining blocks of the hamiltonian matrix
numerically. This has developed into a standard procedure for treating Fermi and
Coriolis resonance at low vibrational energy, although it requires specific pro-
gramming for each molecule (see, for example, Champion et al. 1982; Halonen et al.
1984). With the inclusion of Darling—Dennison resonance to take account of the
transition to local modes (Child & Lawton 1981; Child & Halonen 1984 ; Mills &
Robiette 1985) the method has been extended to interpret observed vibrational
states (but not rotational structure) up to 15000 cm™! (see, for example, Diibal &
Quack 1984; Amrein et al. 1985; Baggott et al. 1986), but it is clear that the
interaction constants obtained from such analyses are effective constants that are
difficult to interpret.

However, even for a triatomic molecule such as HCN, discussed in this paper, the
total density of vibrational states is of the order 1 per cm™ at 15000 cm™?, and for
molecules with four or five atoms this rises to the order of 10 per em™! (see Beyer &
Swinehart (1973) and Stein Rabinovitch (1973) for a discussion of the calculation of
densities of vibrational states); by contrast, the coupling terms increase in magnitude
for the higher quantum numbers, and are often greater than 1cm™. Thus we
approach the situation where resonances are the rule rather than the exception, and
the basis of the perturbation treatment is lost; this is the reason for the ‘irregular’
or ‘chaotic’ patterns of states at high energy. However, some order and regularity
remain amongst the disorder even at the highest energies, and these regular states
play a key role in the spectroscopy and dynamics of highly excited molecules. We
search for new methods of calculating wavefunctions and energies at high excitation
that will meet these problems.

In this paper we describe our attempts to calculate rovibrational energy levels and
wavefunctions variationally, by diagonalizing the matrix of the hamiltonian in a
carefully chosen basis. We are applying these methods to 3-atomic and 4-atomic
molecules such as HCN, HC=CH, and HO-OH, and we are attempting to do exact
calculations from a well-defined potential surface that reproduce spectroscopic
observations within experimental uncertainty. We report here the results of our
calculations on HCN, where we are at present reproducing all the ca. 100 observed
vibrational states for all observed isotopic species, with energies up to 18000 cm™,
to about +1 cm™, and the corresponding rotational constants to about +0.001 ecm™.

Other workers have also been applying these methods, although so far only for 3-
atomic molecules and using somewhat different techniques (see, for example,
Whitehead & Handy 1975; Carney et al. 1978 ; Sutcliffe 1982 ; Tennyson & Sutcliffe
1982; Burden & Quiney 1984; Baécic & Light 1987, 1989; Jensen 1983, 1988a,b,
1989). Tennyson et al. (this Symposium) are reporting variational calculations of a
different type at this meeting. Our own program has been developing over the past
few years, as we have reported in previous publications (Carter et al. 1983 ; Carter &
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Handy 1982, 19864, b; Senkowitsch et al. 1989). However, this is the first paper in
which we have made a serious attempt to fit a wide range of spectroscopic data on
a well studied molecule up to high energy (18000 cm™) with experimental precision.

2. Method of calculation

We express the rovibrational hamiltonian as the sum of kinetic energy 7' and
potential energy V expressed in curvilinear internal coordinates r,, r, and @ (being the
C-H and C-N bond lengths and the H-C-N angle) and the total angular momentum
operator J and its molecule fixed components .J,, J; and J,. We use basis functions
constructed as products of Morse functions of r; and r, and Legendre polynomials of
cos 6, multiplied by the rotational basis functions ¥, , ,, where J, k and M are the
usual angular momentum quantum numbers. The quantum number k, the signed
component of J about the molecular axis, is constrained to be equal to the
vibrational angular momentum quantum number /, and the space-fixed component
M is set to zero. The potential energy is set up analytically as a polynomial expansion
in the morse coordinates y, and y,, and the displacement A6 from linearity in the
H-C-N angle. Matrix elements of the hamiltonian are calculated by Gauss
quadrature. The basis is contracted through preliminary calculations using effective
hamiltonians in », and 7, only, and in ¢ only, which are subsets of the full
hamiltonian, and the final matrix of the full hamiltonian is set up and diagonalized
in this contracted basis using the full rovibrational symmetry of the problem.

(i) Kwnetic energy

We use the exact rovibrational kinetic energy operator 7" for a 3-atomic molecule,
expressed in internal coordinates, derived from the quantum mechanical expression
in external cartesian coordinates by using the coordinate transformation to internal
coordinates and the chain rule of partial differentiation. The explicit expression for
T in this form is quoted in Carter et al. (1983) and in Carter & Handy (1986). This
method was originally proposed by Sutcliffe (1982), and implemented for a 3-atomic
molecule by Carter & Handy (1982) and by Carter ef al. (1983). It is an alternative
to working through the classical kinetic energy expression, using normal coordinates,
and using the Podolsky transformation, as described by Wilson et al. (1955) and by
Watson (1968). This method is perhaps less elegant than the Podolsky approach, and
it does not lead to any general expression for 7" applicable to all molecules; it requires
a separate computer program for each molecular type, and the algebraic expressions
are complex. However, these disadvantages are offset by the advantage that the
algebra can be handled by an algebraic manipulation program as recently
demonstrated by Handy (1987), who has verified the expressions for 3-atomic
molecules and provided the corresponding results for all 4-atomic structures. The
implementation of the method in a computer program is then relatively straight-
forward, and the use of curvilinear internal coordinates rather than normal
coordinates is more closely related to the forms of the vibrational wavefunctions.

(ii) Potential energy

We require an analytical expression for the potential energy which is sufficiently
flexible to reproduce the true potential surface with high accuracy over a wide range
of coordinate space. We have chosen to use a polynomial expansion in the Morse
coordinates y, and y,, and the angular displacement from linearity Af, where
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312 8. Carter, N. €, Handy and 1, M. Mills
Y= l—exp(—a,Ar), i=1or2
Ar, = r(CH)=1r,(CH), Ar, = r(CN)~r,(CN), (1)
and Al =mn—40, (2)

These are displacement coordinates (all three are zero in equilibrium), but the y, are
related by a nonlinear transformation to the usual bond-length displacement
coordinates Ar; in such a manner that a quadratic expression in the displacement
coordinate y,,

Vi=Deyi (3)

is a Morse potential with bhond dissociation energy D, and Morse anharmonicity

constant a;. The relation between y, and Ar; is such that Ar, =0 corresponds to

= 0, but Ar; = + 0 corresponds to y, = +1. Thus a polynomlal expansion in y; has

the correct convergence properties at bond 1engths approaching dissociation, and the

cubie, quartic, and higher terms in the expansion have only to provide the small

correction necessary to convert a Morse function into the true section of the potential
energy function in each bond stretching coordinate.

These coordinates have heen used previously by a number of authors (see, for
example, Halonen & Child 1982, 1988; Halonen 1989). Their advantage in
representing the potential over a conventional polynomial expansion is shown in
table 1, where the coefficients that define our final potential surface for HCN are
presented in three different forms as defined in the equations below :

V=3 Bijk)y}yiAG", (4)
ik

= X (1/ilj k) F(ijk)(y, /a,) (yo/a,) AOF, (5)
ik

= X (/i1 k!) flijk) Ar| Ar AGP. (6)
%, ] 19

The coefficients B(ijk) have dimensions of energy, and are given in the first column
of table 1 in K, where 1 £, = 1 hartree = 4.359748 aJ. The coefficients F(ijk) have
dimensjons (energy)/(length)”, where n = 7+ they are given in the second column of
the table in aJ A "t. Equations (5) and (6) are written in the form of a Taylor series
expansion in the coordinates, which is the origin of the factor (1/¢!j!k!). Thus

F(ijk) = 1!j! k! a} a} B(ijk). (7)
For example,
F(320) = 124} a3 B(320),

o [F(320)/(ad A=%)] = (12)(1.886008)*(2.244737)%(4.350748)[B(320)/K,].

The coefficients f(ijk) have the same dimensions as the F(ijk); they are given in the
third column of the table in the same units as the Fs, i.e. aJ A~". For the quadratic
force constants (1+j+k = 2) the F(ijk) and the f(ijk) are identical (because y,/a; =
Ar; for small displacements), but for higher power terms the relations are obtained
by using equation (1) to expand y, and y, in terms of Ar, and Ar, and substituting
in equation (5). For example,

£(320) = 1202 a2 {B(320) — B(220) + 1B(120) —1B(310) + 1B(210) — LB(110)}. (8)

t 1A=10"m = 10! nm.
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Table 1, Parameters defining our final potential surface for HCN

(See text equations (4), (5) and (6). The B(ijk) values should be taken as definitive, with a, =
1.886098 A and a, = 2.244737 A, The indices 4, j and & deflne the powers of coordinates
associated with Ar(CH), AR(CN), and Af respectively, Foree constants marked * were refined in the
least squares calculation,)

(ijk) BUjk)/B,  FGijk)/(ad A7) ik (@] A1)
(200) 0.2013000 6,24401 Jre 6.2440
o (110) —0,0108352 —0,20000 Jra —0,2000
<< (020) 0.4248417 18.66593 fan 18,6660
- (300) —0,0002253 —0,03954 - —85.3700
< (210) —0.0048431 =0,33722 Jrrn 0.0400
> P (120) ~0.0004700 ~0,03895 . 0.4100
@) : (030) —~0.0008436 —0,24960 Tonn  —125.9500
e (400)* 0,0103775 25.65828 Lo 181.5013
1O (310)* —0.0043049 ~1,78149 Loosi —0.5349
TO (220)% 0.0030858 096460 Lo 09483
= (130)* 0,000761 3 042484 A —0.3206
(040)# 0.0037820 10,04746 Tonen 6717025
<z (500)* 0.0042663 53.27401 —  —1062.5595
€0 (410)* —0,0052727  —1567214 o ~3.1820
E; (320)% —0.0004324 =0.76481 = —=5.1607
085 (230)* —0.0000718 —0,15114 — ~7.7414
8(,; (140)* =0.0026729 —=13.39312 = =18.2267
= Z (050)* 0.0002364 7.04884 —  —3416.8563
T (600)* 0,0050242  709,98058 —  7609.1184
el (510)* —0,0051484  —144,31181 — 28.6001
(420) 0.00? 0.00% == 30.9690
(330)* =0.0000799 =0.95170 == 41.5684
(240) 0,007 0.00% — 74.2507
(150)* 0.0002227 12,524 34 = 368.2129
(060)* —0,0001325 —h3.21121 —  17946.0818
(002) 0.0207734 0.25961 fon 0.2606
(102) —0,0115531 —0.19000 fron =0.1900
(012) ~0.0332090 ~0.65000 S =0.6500
(202)* —0,0040501 —0,25126 Foott 0.1071
(112)* 0.006514 6 0.24050 Jrnon 0.2405
(022)* —0,0080516 ~0,70751 o 07516
(004)* 0.0003639 0.03808 Jooan 0.03808
. (006)* —0,0001552 —=0.48718 — =0.48718
///C,“\ — e e S T ———— ey e
<< * These two constants were kept constrained to zero in the refinement.
p—
< — The f(ijk) are the conventional anharmonic force constants, as used, for example, by
= — Strey & Mills (1973) in their anharmonie force constant calculation on HCN. The /s
® I are comparable with the fs, but they show the advantage of representing the
R~ potential in Morse coordinates y; rather than bond length displacements Ar;. Thus all
=0 the higher power Fs are much smaller (of the order 5% or less) than the
E ©) corresponding fs. The polynomial expansion in the ys converges more rapidly than
%0}

in the Ars, and gives a true representation of the potential surface over a wider range
with fewer terms. There are altogether 33 parameters in our specification of the
potential energy surface, namely a,, a,, and 31 Bs (or Fs). The way in which these
were chosen for our final potential is described in the following section. In the
subroutine in our program the energy was calculated from the Bs using equation (4).
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314 S. Carter, N. C. Handy and 1. M. Mills

(iii) Basts functions

As in our earlier work, we have chosen the vibrational basis functions to be
products of Morse oscillator eigenfunctions in the two stretching coordinates and
Legendre polynomials (for & = 0) or associated Legendre polynomials (for |k| = 1) in
the angle bend. These are multiplied by the usual symmetric top rotational functions
of the Kuler angles to give a complete set of rovibrational basis functions. A complete
basis function might thus be written symbolically in the form (note that we are
numbering the stretching coordinates 1 and 2, and the bending coordinate 3,
contrary to spectroscopic convention)

(p(nl’ Mgy N3, J’ M’ k) = ¢n1(rl) ¢n2(7‘2) ¢n3(6) lﬁJMk(a’ ﬂ’ 7) (9)

However, for the bond stretching coordinates of HCN we chose to use Morse
functions of @, and @, rather than of Ar, and Ar,, where the @, are the mass adjusted
normal coordinates obtained from a preliminary harmonic force field calculation for
each isotopic species considered. When combined with the contraction procedure
described below this resulted in stretching basis functions closer to the true
vibrational eigenfunctions over the range we have considered. Our normalized Morse
basis functions are thus given by the equations

$u(@) = N, 75 £ LE(£)), (10a)
N, =[an!(2s—n)/T(k—v)], (100)
s = [(2m, Dey)t/fio] — (n+3), (11)
& = 2((2m; Dy;)}/fio,] exp (—a; Qy), (12)
Q=3 (LY,;Ar, d,j=1,2. (13)
j

The L3*(§;) in equation (10a) are associated Laguerre polynomials, and N, are
normalization constants. The effective masses m; associated with the coordinates @),
are actually 1 (because the @, are mass adjusted). The parameters a; and D, that
characterize the Morse function in ), are listed in table 2; they were chosen to match
the approximate Morse characteristics of the dominant bond stretch in each normal
coordinate. The L matrix elements used to define the transformation in equation
(13) for each isotopic species, and the assumed molecular geometry, are also listed in
table 2.

Table 2. Parameters used to define the structure and the primitive basis functions for various isotopic
species of HCN

(ro(CH) = r, = 1.0655 A, 7(CN) = r, = 1.1532 A. L matrix elements used to define the stretching

normal coordinates, Ar, = L,;@,, where r, and r, denote displacements in 7(CH) and #(CN); and «,

parameters used to define the Morse basis functions, equations (11, 12).)

1-12-14 1-13-14 1-12-15 2-12-14
Ly /v 1.0246 1.0236 1.0246 0.6788
Ly, /ud 0.1604 0.1460 0.1604 0.3451
Ly, /ut —0.1389 —0.1270 —0.1389 —0.2688
Ly, /u? 0.3680 0.3636 0.3680 0.2872
ay/(ut A 1.8289 1.8943 1.8289 1.4527
ay/(us A1) 0.8653 0.8588 0.8653 0.8013
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The angular basis functions ¢ are the functions @',,(6) related to the associated
Legendre functions P!, (cos#) by the equation
2n3+1)(n3—10)!

2(n3+1)!

0',0) = (—l)l[( ]P’n?,(cos 0), (14)
see equation (1.52) in Zare (1988). For negative values of [ the factor (—1)! on the
right-hand side of (14) should be omitted (Zare 1988). The quantum number n, is
related to the customary linear angle bend quantum numbers (v4,1) by the equation

vy = 2ny—|l], (15)

where [ is the vibrational angular momentum about the axis, v, > |l|, and v, is of the
same parity as [. The functions @!,(6) are linked to the rotational basis functions
(e, B,y) = Dy (f,y) such that I = k. (Note that k is not a good quantum number for
the final eigenfunctions, although it is a good quantum number for our basis
functions.) Only the rotational functions Dy (e, B, ¥) = DJ.(B, y) with M = 0 are
used. (It is important to ensure that consistent phase conventions are used for
the bending vibrational basis functions @%,(6) and the rotational basis functions
D{(B, y). This particularly applies when we come to calculate transition moments
and intensities.)

This choice for the angular basis functions has the desired symmetry properties at
0 = 0 and m, but it has the disadvantage that they are not optimized to represent the
bending eigenfunctions for any particular form of the bending potential, in contrast
to our choice for the stretching vibrational basis functions. We therefore have to use
a large number of angle bending functions in our initial formulation of the basis. This
is overcome by contracting the basis as described in the following section.

At this stage a complete rovibrational basis function may be written in the form

D1y, Mg, V3, U3 S, k) = Py (@y) Pra(@s) Ors(0) Difi(B,7), (16)

where I, has been set equal to k. For the final basis functions we form Wang
combinations of the functions (14) with positive and negative values of k, in order to
make use of the full * or £~ symmetry of the wavefunctions (where Z* is denoted
e and X7 is denoted f for J even, and vice-versa for J odd (see Brown et al. 1975)).

(iv) Calculation of matrix elements: contraction of the basis

All integrals of the kinetic energy over the vibrational coordinates were carried out
numerically by one-dimensional Gauss quadrature (Golub & Welsch 1969). The
integrals over the rotational matrix elements were calculated analytically using
standard angular momentum formulae. For the Morse stretching basis functions the
Gauss integration points were expressed in terms of the variable £, and for the angle
bending functions in terms of the variable cos@.

For the integrals over the potential energy we used a modified integration
procedure based on a combination of the method of Harris et al. (1965), the HEG
method, and a scheme proposed by Schwenke & Truhlar (1984). In the HEG method
the eigenvalues of the matrix of each coordinate in the chosen basis functions are
used to determine the quadrature points, and in the Schwenke & Truhlar scheme the
weights associated with these points are obtained by solving a set of linear equations
constructed from the basis functions and the particular quadrature points used. This
procedure produces quadrature points and weights superior to the original Gauss

Phil. Trans. R. Soc. Lond. A (1990)
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316 S. Carter, N. C. Handy and 1. M. Mills

points and weights, for basis functions chosen to be close to the true eigenfunctions,
since they are optimized to the potential via the optimized basis functions. Further
details of our Gauss integration procedure are given in §6 of Carter & Handy (1986).

Our angle bending basis functions, being chosen as Legendre or associated
Legendre polynomials, are not initially optimized to any bending potential. We
therefore set up and diagonalize a preliminary one-dimensional hamiltonian over 31
bending basis functions only, for each value of k (omitting from the hamiltonian at
this stage those terms that couple different values of k), and use the 13 lowest energy
eigenvectors of this matrix as a contracted set of optimized bending basis functions
for each k. The HEG Schwenke-Truhlar integration procedure is used only with
these optimized bending functions. A similar contraction of the basis is made for the
two stretching coordinates: we use 16 Morse functions in each stretching coordinate
to give an initial basis of 16% = 256 stretching functions, and we take the 54 lowest
energy eigenfunctions of the stretching hamiltonian in this basis as a contracted set
of stretching basis functions.

The 13 contracted bending functions are then combined with the 54 contracted
stretching functions to give a basis of dimension 13 x54 =702 stretch—bend
functions for each value of k. The eigenfunctions of the hamiltonian in this basis are
used to set up the final matrix of the full hamiltonian, for each symmetry (e or f) and
for each value of J, in which different values of £ are coupled together. The
dimensions of the basis at each stage of contraction are summarized in table 3.

Table 3. The dimensions of the basis set at successive stages of contraction

(See text. A right arrow (—) is used to denote contraction by taking the lowest energy
eigenfunctions of the previous basis as a new basis set.)

@, @, @, @, basis 0 basis @, @, 0 basis
16x16 = 256 —~ 54 ; 31—>13; 54 x 13 =702
@, Q, 0 basis symmetrized @), @, 0 basis
J=0, k=0: 54x13 =702 —> ¢ 702
J=1, k=0: 54x13="7027 > 6 500
k=1: 54x13= 702..[3 > f: 241
J=2, k=0: 54x13 =7027 > e 1000
k=1: 54><13=702J" L & 645
k=2: 54x13 =702 J

These procedures of successive contraction of the basis enable us to achieve a
degree of convergence that would otherwise be impossible with hamiltonian matrices
of dimensions less than 1000 x 1000.

(v) Convergence of results: least squares refinement procedure

The whole of the calculation described thus far proceeds from an assumed form
of the potential energy, specified by the parameters described in §2(ii) above, to
vibration-rotation eigenvalues and eigenfunctions (the latter being specified through
the eigenvectors as linear combinations of our basis functions). By the variation
theorem this yields a set of eigenvalues that must each be greater than the
corresponding true eigenvalue when taken in one-to-one correspondence in order of
energy (MacDonald 1933). (There is a reservation to be made about the application
of this theorem to our problem: we have effectively truncated our bending
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vibrational basis set at somewhere around v, = 24, so that our calculations will be

lacking some high bending states above 10000 cm™, but it seems unlikely that this
would significantly affect our calculation of the high energy stretching states listed
in table 4.)

From trial calculations in which we have varied the size of the basis set we believe
that in the final calculations reported below all of the eigenvalues are converged to
within 1 em™! (i.e. errors in our calculation of the eigenvalues due to limitations of
the basis set are all less than 1 cm™), and we believe the lower eigenvalues are
converged to within 0.1 em™. Furthermore we believe that differences between
J =0, 1 and 2 for the same vibrational state (corresponding to the rotational
constant B in the particular vibrational state) are converged within 0.002 cm™. It is
to be expected that such differences will be more accurately calculated than the
absolute energies, because they are sensitive to terms in the hamiltonian representing
rotational effects but relatively insensitive to the vibrational energy terms. Similar
comments apply to our calculation of parity doubling effects (I doubling and I
resonance, i.e. the splitting of e from f levels of the same J and |k| within the same
vibrational state).

We have, finally, enclosed the entire calculation within a least squares procedure
to refine the parameters (or a selection of parameters) in the potential to fit the
observed energy levels. However, these calculations are computer-intensive, even
before we build them into a least squares refinement procedure. The logistical
limitations have so far restricted us to refining the potential to fit only the J =0
eigenvalues for a single isotopic species (the parent HCN molecule, with mass
numbers 1-12-14). However, we carry out the forwards calculation from an assumed
potential to eigenvalues and eigenfunctions for J =0, 1 and 2 for all the isotopic
species on which data have been reported.

3. Results

The results of our calculations are shown in tables 1-4. Table 1 gives the
parameters that define our final refined potential surface; table 2 gives parameters
involved in setting up the basis functions; table 3 gives details of the dimensions of
the basis sets; and table 4 gives a comparison between our calculated energy levels
and those observed spectroscopically, all energies being expressed as vibration—
rotation term values 7 referred to J = 0 in the ground vibrational state for each
isotopic species. The spectroscopic data are taken from Smith et al. (1989) and
references found therein. The states are labelled with the customary quantum
numbers (v,,v%,v;), where v, is the excitation in the CN stretch, v% in the bend, and
vy in the CH stretch, in the customary (but illogical) spectroscopic convention. (This
numbering is adopted in table 4 notwithstanding the different numbering of the
internal coordinates adopted in §2 and in table 1 of this paper.)

For J = 0 we calculate only X vibrational states; for J = 1 we calculate X and IT
states; and for J = 2 we calculate T, IT and A states. Since we do not calculate states
above J = 2, we do not calculate any vibrational states of symmetry @ or higher. The
rotational constants are calculated as B = XT(J = 2)—T(J = 1)} for Z and II states
(we cannot calculate B for A states without going to J = 3). We could equally
calculate B from the difference between J = 1 and 0, but the results are identical to
within +0.001 cm™?, and we do not believe our calculated term values are reliable to
any higher precision. The term values in table 4 are given separately for the e and
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f symmetry components of each IT and A state; the difference gives the effective [
doubling in the IT states. The final two columns of table 4 give the differences
(observed — calculated) for the vibrational band origins and the rotational constants,
respectively, for each vibrational state.

In the calculated term values shown in table 4, the eigenvalue number and
symmetry label (e or f) are shown in the column immediately to the left of each
calculated term value. Thus, for example, the X vibrational states at 17549.6 and
18376.5 cm™ are the 175th and 198th eigenvalues, respectively, from the J =0
matrix (of dimension 701 x 701). In table 4 we have only quoted calculated values for
the observed states, and for a few other unobserved states that we believe may be
observed in the future, or are otherwise of interest. The vibrational assignments were
made automatically in our program, by identifying the largest eigenvector element.

It is well known that the rotational structure and the vibrational energy levels
contain complimentary information on the potential surface. The rotational
constants themselves are most sensitive to the (equilibrium) molecular geometry,
which is already well known for HCN (see table 2); however, the vibrational
dependence of the rotational constants is sensitive to anharmonic effects. In the
perturbation treatment of anharmonicity, the leading terms in the vibrational
dependence of the rotational constants, the af constants, relate to the cubic
anharmonic force field. Since our present least-squares procedure is only able to
refine to fit the J = 0 energy levels, we chose to start from the potential surface
reported by Strey & Mills (1973), determined from a perturbation calculation, for
which the cubic anharmonic terms are already adjusted to reproduce the o
constants determined from the lower vibrational states. We have then refined the
quartic and higher power terms in our potential surface, but we have not changed the
quadratic and cubic terms from those reported by Strey & Mills. The potential
constants that we have refined are marked in table 1. Table 4 shows that we calculate
almost all of the rotational constants (and parity doubling splittings) for all isotopic
species correct to +0.001 cm ™. For vibrational states above 10000 cm™ this implies
an accuracy of one part-in 107, but this accuracy probably only applies to differences
between closely related eigenvalues rather than to their absolute values.

Table 4 also shows that we calculate most vibrational states of all isotopic species
correct to within +1 em™. The exceptions are almost all at high energy. (The
5.43 cm ™! discrepancy for the (0, 22, 1) state of the 1-13-14 species is probably due to
an error in the spectroscopic data.) The well-known (Av, = —3, Av, = +2) resonance,
between, for example, the levels at 14653 and 14671 ecm™, is successfully fitted.
Apart from this example, the HCN overtone spectrum is actually remarkably free of
anharmonic resonances. Thus both the vibrational energies and the rotational
structure are fit with high accuracy, and the remaining discrepancies between our
calculations and the observed data are more likely to be due to errors in our potential
surface than to lack of convergence in our calculations. We believe that our potential
surface is the most accurate surface yet produced for the HCN molecule over the
range of coordinate space to which the spectroscopic data relate.

4. Discussion

These results show that variational calculations for molecules like HCN can
calculate vibrational and rotational structure up to high energy with high precision,
and can be used to obtain a highly accurate potential surface. They relate the potential
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surface directly to the spectrum for all isotopic species, and they incorporate all
resonances (Fermi, Coriolis, Darling—Dennison, etc.) without special treatment.
Wavefunctions are available (as linear combinations of the basis functions), and can
be used to calculate transition intensities if the dipole moment surfaces are known ;
we are planning to do this for HCN in the near future. Similar calculations have been
done by Jensen (1988b) for the CH, molecule, with great success. Reliable absolute
intensity measurements are notoriously difficult to make experimentally, and it may
well prove that the ab initio calculation of intensities by this method will prove to be
an important technique.

However, variational calculations of rovibrational states have a number of
limitations. A limitation of this work is that our results do not span the HNC
minimum in the potential surface. The spectroscopic data on this molecule are
confined to two well separated regions, one around the HCN minimum (going up to
v, = 5 and [, = 3 in the bending mode), and one around the HNC minimum (where
even less is known about excited bending states). The high precision and high quality
fit of our calculation depends on using highly optimized basis functions, and it would
be difficult to find such functions to span the whole of the HCN/HNC surface. Bacié
& Light (1987) have in fact reported variational calculations on this molecule that
range from the HCN to the HNC minimum, using a discrete variable representation
(pvR) with a distributed gaussian basis (DéB). The DvR—DGB technique is well suited
to non-rigid molecule problems that span a wide range of coordinate space, but it has
not yet been used to obtain results approaching the precision of those reported here
for HCN. In particular Bagi¢ & Light’s results span the full range of the bending
coordinate from HCN to HNC, but they only span 1 quantum of excitation in each
of the stretching coordinates.

The other main limitation of calculations of this kind is that they are computer
intensive. The technique we are using will require a new program for almost every
molecule. It requires substantial time on a super-computer, and even so it is hardly
practical yet to go above J = 2 for HCN, or to do a least squares refinement above
J = 0. We are at present running a similar program for 4-atomic molecules, but full
calculations over all the internal coordinates for larger molecules pose considerable
problems. Nonetheless one should not underestimate the potential of variational
calculations for treating the vibration-rotation problem. Recent developments in the
formulation of these calculations, combined with developments in computer
technology, have shown a far greater potential for applications of this method than
appeared to be possible even five years ago.

We are grateful to Dr Gordon Caldow, who made significant contributions to the preliminary
stages of this work. We also acknowledge the Science and Engineering Research Council for various
grants in support of our research.
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Discussion
N. C. Haxpy (Cambridge University , U.K.). The calculation of rovibrational energy

levels by the variational method has made tremendous progress since the first such
calculations on triatomic molecules in 1975 (Carney & Kern 1975; Whitehead &
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Handy 1975). One of the first successes was the recognition that an expansion of the
potential in powers of Ar through fourth order was not satisfactory; a much better
representation is obtained by replacing Ar by the Simons—Parr-Finlan coordinate
(Ar/r), or the Morse coordinate (1 —e™*A7),

The question arises as to how one is to interpret the mass of data (many
eigenvalues, each with a very long eigenvector) from such calculations. I like to
consider the variational method as a theoretical spectrometer, which produces data
on energy level differences in the same way as the experimental spectroscopist. One
way therefore to analyse the output of the theoretical spectrometer is to do the same
analysis as the experimentalist, that is to set up effective hamiltonians, etc. If such
an analysis is successful, then such a model is realistic. If it is not, then the effective
hamiltonian model is deficient. Finally, I would like to suggest that many of the
levels that are calculated at high energy, but which are not observed in the spectrum,
may correspond to ‘chaotic’ quantum states.

I. M. Miris. I completely agree with Dr Handy’s remarks, particularly with his last
comment about chaotic states. I also believe that most of these states may never be
observed, due to the lack of an appropriate transition moment.

Additional reference
Carney, G. D. & Kern, C. W. 1975 Int. J. Quant. chem. Symp. 9, 317.
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